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2) Complete the following M/M/m/m description with the following terms:

(1) Bernoulli (11 binomial (1) exponential
(IV) Gaussian (V) geometric (V1) Poisson

The Erlang B formula is derived under some assumptions. Two important
assumptions are (1) the call request process is modeled by a/an
Poi&pn process and (2) the call durations are assumed to be i.i.d.
exPgnential _ random variables. For the call request process, the times
between adjacent call requests can be shown to be i.i.d. exp§ngntial
random variables. On the other hand, if we consider non-overlapping time
intervals, the numbers of call requests in these intervals are
Pois¢by random variables.

In order to analyze or simulate the system described above, we consider
slotted time where the duration of each time slot is small. This technique shifts
our focus from continuous-time Markov chain to discrete-time Markov chain.
In the limit, for the call request process, only one of the two events can
happen during any particular slot: either (1) there is one new call request or
(2) there is no new call request. When the slots are small and have equal
length, the numbers of new call requests in the slots can be approximated by
iLi.d. _ Beff®ulli random variables. In which case, if we count the
total number of call requests during n slots, we will get a/an
bindhjial random variable because it is a sum of i.i.d.
Befndulli random variables.

When we consider a particular time interval | (not necessarily small), the

number of slots in this interval will increase as the slots get smaller. In the

limit, the number of call requests in the time interval | which we approximated

by a bin¢hjial random variable before will approach a/an
PoigBgn random variable.

Similarly, if we consider the numbers of slots between adjacent call requests,

these number will be i.i.d. _ geom{®)c random variables. These
random variables can be thought of as discrete counterparts of the i.i.d.
expdfential random variables in the continuous-time model.
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